Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Stem Cell ; 30(3): 312-332.e13, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36796362

RESUMO

Human genome variation contributes to diversity in neurodevelopmental outcomes and vulnerabilities; recognizing the underlying molecular and cellular mechanisms will require scalable approaches. Here, we describe a "cell village" experimental platform we used to analyze genetic, molecular, and phenotypic heterogeneity across neural progenitor cells from 44 human donors cultured in a shared in vitro environment using algorithms (Dropulation and Census-seq) to assign cells and phenotypes to individual donors. Through rapid induction of human stem cell-derived neural progenitor cells, measurements of natural genetic variation, and CRISPR-Cas9 genetic perturbations, we identified a common variant that regulates antiviral IFITM3 expression and explains most inter-individual variation in susceptibility to the Zika virus. We also detected expression QTLs corresponding to GWAS loci for brain traits and discovered novel disease-relevant regulators of progenitor proliferation and differentiation such as CACHD1. This approach provides scalable ways to elucidate the effects of genes and genetic variation on cellular phenotypes.


Assuntos
Células-Tronco Neurais , Infecção por Zika virus , Zika virus , Humanos , Células-Tronco Neurais/metabolismo , Diferenciação Celular/genética , Encéfalo/metabolismo , Zika virus/metabolismo , Expressão Gênica , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo
2.
Cell Rep ; 35(10): 109224, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34107252

RESUMO

Drug development is hampered by poor target selection. Phenotypic screens using neurons differentiated from patient stem cells offer the possibility to validate known and discover novel disease targets in an unbiased fashion. To identify targets for managing hyperexcitability, a pathological feature of amyotrophic lateral sclerosis (ALS), we design a multi-step screening funnel using patient-derived motor neurons. High-content live cell imaging is used to evaluate neuronal excitability, and from a screen against a chemogenomic library of 2,899 target-annotated compounds, 67 reduce the hyperexcitability of ALS motor neurons carrying the SOD1(A4V) mutation, without cytotoxicity. Bioinformatic deconvolution identifies 13 targets that modulate motor neuron excitability, including two known ALS excitability modulators, AMPA receptors and Kv7.2/3 ion channels, constituting target validation. We also identify D2 dopamine receptors as modulators of ALS motor neuron excitability. This screen demonstrates the power of human disease cell-based phenotypic screens for identifying clinically relevant targets for neurological disorders.


Assuntos
Esclerose Lateral Amiotrófica/genética , Diferenciação Celular , Humanos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA